|
姓名:张宏立 |
职务/职称:教授/学院党委书记 |
硕士/博士导师:硕士生导师/博士生导师 |
联系方式:0991-2859286 |
个人简介:
张宏立:工学博士、教授、博士生导师、bet356唯一官网体育教学名师、宝钢优秀教师奖获得者。AppliedEnergy、Energy、Mechanical Systems and Signal Processing、chaos等期刊的审稿专家。中国自动化学会教育工作委员会、中国自动化学会故障诊断与安全性专委会委员、中国仿真学会智能仿真优化与调度专委会委员。近几年,主持国家自然科学基金项目2项、国家重点研发项目子项1项,省部级项目3项、横向课题4项,参与国家自然科学基金项目3项,发表SCI/EI论文近百篇,其中SCI一、二区论文40余篇,ESI高被引论文2篇、F5000论文1篇。获自治区科学技术奖励(自然科学二等奖)1项,指导研究生4次获得自治区优秀学位论文,获自治区自然科学优秀论文奖一等奖1项、二等奖3项。
研究方向:
主要研究方向包括:非线性系统的动力学分析与控制、工业系统故障诊断、先进控制、机器学习与群智优化等
主讲课程:
主要讲授本科专业课程《现代控制理论》和《控制系统仿真》、硕士研究生生课程《系统辨识与自适应控制》、博士研究生课程《泛函分析与小波理论》等
近五年学术成果:
1、学术论文:发表SCI/EI论文近百篇,,其中SCI一、二区论文40余篇,代表作如下:
[1]ZHANG S H, WANG C, ZHANG H L, et al. Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motorsystem[J]. Chaos, Solitons & Fractals, 2022, 156: 111809.(SCI)
[2]MENG Y, ZHANG H L, FAN W H. Analysis of the network structure characteristics of virtual power plants based on a complex network[J]. Electric Power Systems Research, 2022, 204: 107717.(SCI)
[3]DONG Y C, ZHANG H L, WANG C, et al.A novel hybrid model based on bernstein polynomial with mixture of gaussians for wind power forecasting[J]. Applied Energy, 2021, 286: 116545.(SCI)
[4]DONG Y C, ZHANG H L, WANG C, et al.Wind power forecasting based on stacking ensemble model, decompositionand intelligent optimization algorithm[J]. Neurocomputing, 2021, 462: 169–184.(SCI)
[5]LI X K, ZHANG H L, FAN W H, et al. Finite-time control for quadrotor based on composite barrier lyapunov function with system state constraints and actuator faults[J]. Aerospace Science and Technology, 2021, 119: 107063.(SCI)[6]LI X K, ZHANG H L, FAN W H, et al. Multivariable finite-time composite control strategy based on immersion and invariance for quadrotor under mismatched disturbances[J]. Aerospace Scienceand Technology, 2020, 99: 105763.(SCI)[7]MENG Y, ZHANG H L. Static-dynamic hybrid sequential vpp network analysis[J]. Iet Generation Transmission & Distribution, 2020, 14(17): 3469–3477.(SCI)
[8]WANG C, ZHANG H L, MA P. Wind power forecasting based on singular spectrum analysis and a new hybrid laguerre neural network[J]. Applied Energy, 2020, 259: 114139.(SCI)
[9]ZHANG S H, ZHANG H L, WANG C, et al. Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation[J]. Chaos, Solitons & Fractals, 2020, 141: 110355.(SCI)
[10]WANG C, ZHANG H L, FAN W H, et al. Finite-time function projective synchronization control method for chaotic wind power systems[J]. Chaos, Solitons & Fractals, 2020, 135: 109756.(SCI)
[11]MA P, ZHANG H L, FAN W H, et al. A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains[J]. ISA
Transactions, 2020, 99: 465–478.(SCI)
[12]ZHAO J W, ZHANGH L, LI X K. Active disturbance rejection switching control of quadrotor based on robust differentiator[J]. Systems Science and Control Engineering, 2020, 8(01): 605–617.(SCI)
[13]MA P, ZHANG H L, FAN W H, et al. A novel bearing fault diagnosis method based on 2d image representation and transfer learning-convolutional neural network[J]. Measurement Science and Technology, 2019, 30(05): 055402.(SCI)
[14]MA P, ZHANG H L, FAN W H, et al. Early fault detection of bearings based on adaptive variational mode decomposition and local tangent space alignment[J]. Engineering Computations, 2019, 36(02): 509–532.(SCI)
[15]MA P, ZHANG H L, FAN W H, et al. Early fault diagnosis of bearing based on frequency band extraction and improved tunable q-factor wavelet transform[J]. Measurement, 2019, 137: 189–202.(SCI)
[16]MA P, ZHANG H L, FAN W H, et al. Fault diagnosis using an improved fusion feature based on manifold learning for wind turbine transmission system[J]. Journal of Vibroengineering, 2019, 21(07): 1859–1874.(SCI) (SCI)
[17]ZHANGH L, WANG C, FAN W H. A new filter collaborative state transition algorithm for two-objective dynamic reactive power optimization[J]. Tsinghua Science and Technology, 2019, 24(01): 30–43.(SCI)
[18]WANG C, ZHANG H L, FAN W H, et al. Analysis of chaos in high-dimensional wind power system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(01): 013102.(SCI)
[19]WANG C, ZHANG H L, FAN W H, et al. Adaptive control method for chaotic power systems based on finite-time stability theory and passivity-based control approach[J]. Chaos, Solitons & Fractals, 2018, 112: 159–167.(SCI)
[20]MA P, ZHANG H L, FAN W H, et al. Novel bearing fault diagnosis model integrated with dual-tree complex wavelet transform, permutation entropy
and optimized fcm[J]. Journal of Vibroengineering, 2018, 20(02): 891–908.(SCI)
[21]WANG C, ZHANG H L, FAN W H, et al. A new chaotic time series hybrid prediction method of wind power based on eemd-se and full-parameters continued fraction[J]. Energy, 2017, 138: 977–990.(SCI)
[22]WANG C, ZHANG H L, FAN W H. Generalized dislocatedlagfunction projective synchronization of fractional order chaotic systems with fully uncertain parameters[J]. Chaos, Solitons & Fractals, 2017, 98: 14–21.(SCI)
[23]WANG C, ZHANG H L, FAN W H, et al. A new wind power prediction method based on chaotic theory and bernstein neural network[J]. Energy, 2016, 117: 259–271.(SCI)
[24]WANG C, ZHANG H L, FAN W H. Volterra series identification based on state transition algorithm with orthogonal transformation[J]. Telkomnika (Telecommunication Computing Electronics and Control), 2016, 14(01): 171–180.(SCI)
[25]LI R G, ZHANG H L, FAN W H, et al. A new model about fractional order chaotic time series prediction[J]. Journal of Computational Information Systems, 2015, 11(18): 6637–6651.(SCI)
[26]ZHANG H L, WANG C, FAN W H. A projection pursuit dynamic cluster model based on a memetic algorithm[J]. Tsinghua Science and Technology, 2015, 20(06): 661–671.(SCI)
[27]ZHANG H L, ZHANG H L. Parameter identification of lorenz chaotic system through quantum genetic algorithm[J]. International Journal of Applied Mathematics and Statistics, 2013, 46(16): 349–356.(SCI)
[28]李新凯,张宏立,范文慧.非匹配扰动下变体无人机预设性能控制[J].航空学报, 2022, 43(02): 382-397.(EI)
[29]李新凯,张宏立,范文慧.基于时变障碍李雅普诺夫函数的变体无人机有限时间控制[J].自动化学报, 2021: 1–15.(EI)
[30]柏罗,张宏立,王聪.基于高效注意力和上下文感知的目标跟踪算法[J].北京航空航天大学学报, 2021: 1–12. (EI)
[31]吴贝贝,张宏立,王聪,等.基于正态云模型的状态转移算法求解多目标柔性作业车间调度问题[J].控制与决策, 2021, 36(05): 1181–1190.(EI)
[32]王新,李喆,张宏立.一种迭代聚合的高分辨率网络Anchor-free目标检测方法[J].北京航空航天大学学报, 2021, 47(12): 2533–2541.(EI)
[33]孟月,张宏立,范文慧.虚拟电厂信息流和能量流关键线路辨识研究[J].电网技术, 2021: 1–10.(EI)
[34]王聪,张宏立,马萍.基于改进状态转移算法的不确定混沌电力系统参数辨识[J].电网技术, 2020, 44(08): 3057–3064.(EI)
[35]张绍华,王聪,张宏立.永磁同步电动机的簇发振荡分析及协同控制[J].物理学报, 2020, 69(21): 205–213.(SCI)
[36]马萍,张宏立,范文慧.基于局部与全局结构保持算法的滚动轴承故障诊断[J].机械工程学报, 2017, 53(02): 20–25.(EI)
[37]张宏立,李远梅.基于滤子混合协同进化算法的无功优化[J].控制与决策, 2017, 32(09): 1701–1706.(EI)
[38]王聪,张宏立.基于原对偶状态转移算法的分数阶多涡卷混沌系统辨识[J].物理学报, 2016, 65(06): 56–64.(SCI)
[39]张宏立,李瑞国,范文慧,等.基于量子粒子群的全参数连分式混沌时间序列预测[J].控制与决策, 2016, 31(01): 52–58.(EI)
[40]李瑞国,张宏立,范文慧,等.基于改进教学优化算法的Hermite正交基神经网络混沌时间序列预测[J].物理学报, 2015, 64(20): 108–120.(SCI)
近五年主持或在研项目:
一、纵向项目
1、国家自然科学基金项目,52267010,新能源电力系统的随机动力学分析与控制研究,2023/1—2026/12,33万元,在研,主持人
2、国家重点研发项目子项,2021YFB1507001,风电全直流系统设计和稳定机理研究,2022/9—2025/8,50万,在研,子项主持人。
3、自治区自然基金面上项目,复杂环境下高维电力系统混合动力学分析与控制研究、2023/1—2025/12,10万,在研,主持人
4、国家自然科学基金项目,51767022,集群风电系统混沌动力学行为分析与控制研究,2018/1/1—2021/12/31,35万元,结题,主持人
5、自治区天山雪松科技创新领军人才后备,含高比例新能源电力系统非线性动力学分析与故障诊断,2021/04-2023/04,20万元,结题,主持人
6、教育部科学技术重点项目,兆瓦级风机变桨同步误差主动抑制方法研究,2012/1—2014/12,10万,结题,主持人
7、自治区自然基金面上项目,2012211A003,气动人工肌肉与仿人机械手的研究、2012/1—2014/12,7万,结题,主持人
二、横向项目
1、六自由stewart平台集成控制系统开发,2019/12-2022/6,12万,结题,主持人
2、中国新能源汽车产品检测工况研究和开发——乌鲁木齐城市数据采集,2016/9-2018/12 ,115万,结题,主持人
3、离散事件和系统动力学仿真模型集成开发,2016/1-2016/6,8万,结题,主持人
4、保障系统动力学仿真模型开发,2015/8-2016/6,5万,结题,主持人
5、复杂杂离散时间动态系统仿真模型开发,2015/1-2015/11,10万,结题,主持人